Learning Influence Functions from Incomplete Observations

نویسندگان

  • Xinran He
  • Ke Xu
  • David Kempe
  • Yan Liu
چکیده

We study the problem of learning influence functions under incomplete observations of node activations. Incomplete observations are a major concern as most (online and real-world) social networks are not fully observable. We establish both proper and improper PAC learnability of influence functions under randomly missing observations. Proper PAC learnability under the Discrete-Time Linear Threshold (DLT) and Discrete-Time Independent Cascade (DIC) models is established by reducing incomplete observations to complete observations in a modified graph. Our improper PAC learnability result applies for the DLT and DIC models as well as the Continuous-Time Independent Cascade (CIC) model. It is based on a parametrization in terms of reachability features, and also gives rise to an efficient and practical heuristic. Experiments on synthetic and real-world datasets demonstrate the ability of our method to compensate even for a fairly large fraction of missing observations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Plausible reasoning from spatial observations

This article deals with plausible reasoning from incomplete knowledge about large-scale spatial properties. The available information, consisting of a set of pointwise observations, is extrapolated to neighbour points. We use belief functions to represent the influence of the knowledge at a given point to another point; the quantitative strength of this in­ fluence decreases when the distance b...

متن کامل

Learning STRIPS Operators from Noisy and Incomplete Observations

Agents learning to act autonomously in realworld domains must acquire a model of the dynamics of the domain in which they operate. Learning domain dynamics can be challenging, especially where an agent only has partial access to the world state, and/or noisy external sensors. Even in standard STRIPS domains, existing approaches cannot learn from noisy, incomplete observations typical of real-wo...

متن کامل

Learning to Classify Incomplete Examples

Most research on supervised learning assumes the attributes of training and test examples are completely speciied. Real-world data, however, is often incomplete. This paper studies the task of learning to classify incomplete test examples, given incomplete (resp., complete) training data. We rst show that the performance task of classifying incomplete examples requires the use of default classi...

متن کامل

Statistical Parameter Learning for Belief Networks with Fixed Structure

In this report, we address the problem of parameter learning for belief networks with fixed structure based on empirical observations. Both complete and incomplete (data) observations are included. Given complete data, we describe the simple problem of single parameter learning for intuition and then expand to belief networks under appropriate system decomposition. If the observations are incom...

متن کامل

Inverse Optimal Control with Incomplete Observations

In this article, we consider the inverse optimal control problem given incomplete observations of an optimal trajectory. We hypothesize that the cost function is constructed as a weighted sum of relevant features (or basis functions). We handle the problem by proposing the recovery matrix, which establishes a relationship between available observations of the trajectory and weights of given can...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016